
|H||||||||||III
O US005170353A

United States Patent (19) 11 Patent Number: 5,170,353
Verstraete (45) Date of Patent: Dec. 8, 1992

(54) BUCKET-ORIENTED ROUTE PLANNING 4,796, 189 1/1989 Nakayama et al. 340/995
METHOD, AND NAVIGATION SYSTEM 4,817,000 3/1989 Eberhardt 364/443
COMPRISING A ROUTE PLANNER FOR OTHER PUBLICATIONS
CARRYING OUT SUCH A METHOD

R. Cooper et al., "The Average Time Until Bucket
75) inventor: Rik A. Verstraete, Berchem, Belgium Overflow', ACM Trans. Database Sys., vol. 9, No. 3,
73) Assignee: U.S. Philips Corporation, New York, Sep. 1984, pp. 392–408.

N.Y. Hart et al., "A Formal Basis for the Heuristic Determi
nation of Minimum Cost Paths", IEEE Trans. Science

(21) Appl. No.: 723,704 & Cybernetics, vol. SSC-4, No. 2, Jul. 1968, pp.
22 Filed: Jun. 25, 1991 100-107.

Imai et al., “Practical Effects of Existing Shortest Path
Related U.S. Application Data Algorithms and a New Bucket Algorithm', J. of Opera

63 Continuation of Ser. No. 366,803, Jun. 14, 1989, aban- tions Rsch. Soc. of Japan, vol. 27, No. 1, Mar. 1984, pp.
doned. 43-57.

O 8 Knuth, The Art of Computer Programming, vol. 3, Sort
30 Foreign Application Priority Data ing & Searching, (Addison-Wesley 1973).
Nov. 17, 1988 NL Netherlands 8802833 Primary Examiner-Gary Chin
51) Int. Cl. .. G06F 15/50 Attorney, Agent, or Firm-Anne E. Barschall
(52) U.S. Cl. 364/444; : 57 - - ABSTRACT

58) Field of Search 364/443, 444, 424.02, A method of planning optimum routes on the basis of
364/449; 180/167, 168, 169; 318/587; 340/990, successively selected sub-sets of the total topographical

995 and traffic information, so-called buckets, which
method anticipates which buckets will be of importance

(56) References Cited in the near future for the calculation of the navigation
U.S. PATENT DOCUMENTS data, and navigation system comprising a route planner

4,301,506 1/1981 Turco 364/444 for carrying out Such a method.
4,570,227 2/1986 Tachi et al. 364/444
4,777,416 10/1988 George, II et al. 364/424.02 - 15 Claims, 4 Drawing Sheets

ENCODED
DIGITAL
RADIO 8

SIGNALS RADIO
MICROPROCESSOR

INTERFACE
13

COMPASS

DISPLAY ODOMETER

INTERFACE

WHEEL
SENSORS KEY

BOARD

U.S. Patent Dec. 8, 1992 Sheet 1 of 4 5,170,353

ENCODED
DIGITAL
RADIO

SIGNALS 8
MICROPROCESSOR

INTERFACE
13

COMPASS

KEY DISPLAY ODOMETER
BOARD d

SENSORS

FIG.6

U.S. Patent Dec. 8, 1992 Sheet 2 of 4 5,170,353

N

UPDT(S,Cf(v) g(vi)

U.S. Patent Dec. 8, 1992 Sheet 3 of 4 5,170,353

C = CU (vi)
g(vi)sg(v)+R(vi UPDT f (vi)

UPDT g (vi)

C:= CU (vi)
UPDT f (vi)
UPDT g (vi)

UPDT fifu

U.S. Patent

5,170,353
1.

BUCKET-ORIENTED ROUTE PLANNING
METHOD, AND NAVIGATION SYSTEM
COMPRISING AROUTE PLANNER FOR
CARRYING OUT SUCH A METHOD

This is a continuation of application Ser. No.
07/366,803, filed Jun. 14, 1989 now abandoned.

INTRODUCTION
Electronic navigation and information systems are

being developed for use in the car. These systems can
relieve the driver of a car or the passengers from the
task of determining the best route to a destination. Nota
bly for police, fire brigades, ambulances and the like it is
very important not to lose time in searching for the best
route, but also the average driver can save himself sub
stantial annoyance by using such a system. The system
may be useful not only in unknown surroundings, but
also in known surroundings by planning a route which
avoids traffic jams.
One of the major problems involved in the develop

ment of a nagivation and information system for cars is
posed by the vast amount of topographical and traffic
information required for route planning. This informa
tion must be stored and be readily accessible for pro
cessing in a processor.
The Compact Disc is a highly efficient medium for

the storage of digital data: one CD can store 4800 Mbit.
This is more than thousand times the storage capacity of
the largest RAM semiconductor memory available at
present. The access time of a CD is much shorter than
that of a magnetic tape cassette, but longer than that of
a semiconductor memory and it is certainly not negligi
bly short.
The invention relates to a method of determining an

optimum route between a starting position and a desti
nation position on the basis of topographical and traffic
information by repeated selection of vectors and expan
sion of a search tree which contains vectors which form
already planned sub-routes, to each vector there being
assigned a weighting factor and for each sub-route there
being determined a cumulative weighting factor by
addition of the weighting factors of the vectors of the
already planned sub-route.
The invention also relates to a navigation system

comprising a route planner which includes:
a memory for the bucket-wise storage of topographi

cal and traffic information;
an input/output unit for the input and output of infor

mation concerning starting position and destination
position;

a processor which is programmed so that, via re
peated selection of vectors and expansion of a search
tree containing vectors which form already planned
sub-routes, an optimum route is calculated from a given
starting position to a given destination position on the
basis of weighting factors assigned to each vector.
A method of this kind is known from the article "A

formal basis for the heuristic determination of mini
mumcost paths" by Hart et al., IEEE Transactions of
Systems Science and Cybernetics, Vol. SSC-4, No. 2,
July 1968. On the basis of the weighting factors as
signed, the criteria on the basis of which the route is
optimised are tested: for example, minimum distance or
minimum time.
Such a method and a navigation system operating on

the basis of such a method have the drawback that the

5

O

15

20

25

30

35

40

45

50

55

60

65

2
amount of data which must be continuously available
for route planning in practice appears to be too large for
a working memory to be used in conjunction with the
method and the navigation system.

Therefore, it is an object of the invention to provide
a method which determines optimum routes on the basis
of successively selected blocks of sub-information and
which anticipates which sub-information will be of
importance for the calculations in the processor in the
near future. To achieve this, a method in accordance
with the invention is characterized in that the informa
tion is sub-divided into buckets, for the repeated selec
tion of vectors and the expansion of the search tree
there being used exclusively vectors from a predeter
mined maximum number of buckets which are selected
from all buckets available, on the basis of an evaluation
value which is determined by a sum of the weighting
factors of the constituent vectors of an already planned
sub-route and an estimated fictitious sub-route yet to be
followed via the relevant bucket.

Thus, each time the instantaneously required infor
mation is selected for route planning.
A navigation system in accordance with the inven

tion is characterized in that the memory comprises a
background memory in which the bucket-wise organ
ised topographical and traffic information is stored and
also comprises a working memory whereto there are
transferred from the background memory only the
buckets which have been selected on the basis of an
evaluation value which is determined by a sum of the
weighting factors of the constituent vectors of an al
ready planned sub-route and an estimated fictitious
sub-route yet to be followed via the relevant bucket,
only vectors from buckets in the working memory
being used for the repeated selection of vectors and the
expansion of the search tree.

It is thus achieved that the instantaneously required
information is always present in the working memory.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a navigation system for a car;
FIG. 2 shows a flowchart of the known search algo

rithm;
FIG. 3 is a detailed representation of a part of the

search algorithm;
FIG. 4 shows a flowchart of the modified search

algorithm;
FIG. 5 illustrates the determination of an evaluation

value for a neighbouring bucket of a candidate bucket in
the working memory;

FIG. 6 diagrammatically shows a map segment in
which a vector touches a bucket boundary.

DESCRIPTION OF THE INVENTION

A navigation and information system for cars such as,
for example CARIN (Car Information and Navigation
System) plans the best route, assists the driver by way of
a speech synthesizer or a symbol display panel, periodi
cally determines the position of the vehicle, selects an
alternative route when traffic obstructions are signalled
by encoded digital radio signals, and can also provide
tourist information.
For the storage of the digital data representing the

necessary topographical and traffic information,
CARIN uses the Compact Disc.
FIG. 1 shows the navigation system for a car. A

microprocessor 2, a working memory 3 which has a
capacity of, for example 1 Mbyte, and a CD player 4

5,170,353
3

communicate with one another via a bus 1. In addition
to the known radio signals, a radio 5 also receives en
coded digital radio signals 8 containing traffic informa
tion. These signals are decoded in a decoder 6 which is
connected to the bus 1 via an interface 7. A keyboard 9
communicates with the bus 1 via an interface 11, and
also the display 10 which comprises a monitor and an
electronic speech synthesizer with loudspeakers for
reproducing topographical, traffic and navigation data.
Via an interface 12, the microprocessor 2 determines
the actual position of the vehicle with the aid of a con
pass 13 (for example, a fibre optic gyroscope), an odom
eter 14 and wheel sensors 15.
The topographical and traffic information can be

digitised in various ways. For example, the raster scan
ning method is as follows. A map (for example, scale
1:100 000) is divided into pixels of, for example 0.1
mmX0.1 mm. The colour of each pixel is represented
by a digital code. Another method which requires sub
stantially less storage capacity is the vector method.
Therein, the axes of roads are approximated by straight
line segments, each of which represents a vector. An
end of a vector satisfying given requirements is referred
to as a node or 0-cell. A vector or series of vectors
interconnecting two nodes is referred to as a chain or
I-cell. A surface area enclosed by chains is referred to as
a 2-cell. The terms 0-cell, 1-cell and 2-cell are known
from topology; see S. Lefschetz "Introduction to topol
ogy', Princeton University Press, Princeton, N.J., 1949.
For the search algorithms to be described, it is assumed
that digitising is performed by way of the vector
method. Therefore, hereinafter each 1-cell is a vector
and each vector is a 1-cell for the sake of simplicity.
As has already been stated, the Compact Disc is used

as the storage medium for the system, notably a Com
pact Disc Interactive for which an international stan
dard is being prepared. In addition to the digital data
required, the CD-I disc will contain software. The stor
age capacity of a CD is 4800 Mbit. The semiconductor
working memory of the computer has a capacity of only
approximately 8 Mbit. It will take approximately one
hour for reading all information of a CD, and approxi
mately 6 seconds for filling the working memory com
pletely with information supplied by a CD. The access
time to the information of the CD is not negligibly
short, so that the data cannot be read at the very instant
at which they are required for navigation. In accor
dance with the invention, an anticipation is made as
regards the sub-information which will be relevant for
the navigation within the near future. To this end, the
data must be stored on the CD as conveniently as possi
ble: the information is sub-divided into buckets, prefera
bly but not necessarily rectangular buckets. In order to
minimise the access time, the buckets preferably contain
approximately the same amount of data; moreover,
buckets which are topographically situated near one
another, preferably are also situated near one another
on the CD.
A map can be sub-divided into buckets accordancing

to various algorithms, for example the "region quad
tree' algorithm where a rectangular map is repeatedly
sub-divided into four rectangles until the amount of
information in each rectangle drops below a given limit.
The arrangement on the CD of the buckets formed by

the rectangles thus found is comparable with the trans
lation of a two-dimensional structure into a one dimen
sional structure, see E. A. Patrick, D. R. Anderson and
F. K. Bechtel "Mapping multidimensional space to one

10

15

20

25

30

35

45

50

55

60

65

4.
dimension for computer output display", IEEE Trans
actions C-17, 949-953, 1968. This can be realised by
way of space-filling curves which are known from liter
ature, see G. Peano, "Sur une courbe, quiremplit toute
une aire plane', Math. Annalen 36, 157-160, 1890. Such
a space-filling curve is suitable for the arrangement of
buckets obtained by partitioning using the "region
quadtree' algorithm. This is because buckets situated
near one another are often also situated near one an
other on the curve, so that the fetching of information
concerning such a near region requires little time.

Furthermore, an efficient structure is required within
each bucket for efficient treatment of the information
read from the CD. The addresses in the memory con
taining the data for the 0-, 1- and 2-cells are linked by
way of lists which use pointers for coupling the various
memory locations.
FIG. 2 shows a flowchart of the search algorithm

which is known from the article "A formal basis for the
heuristic determination of minimum cost paths" by Hart
et al., IEEE Transactions of Systerns Science and Cy
bernetics, Vol. SSC-4, No. 2, July 1968. The informa
tion is derived from the entire memory. The algorithm
operates on the basis of repeated selection of vectors
from a candidate list C and expansion of a search tree S
which contains vectors v which form already planned
sub-routes. To each vector v there is assigned a
weighting factor R(v)> =0, for example the corre
sponding distance or the estimated period of time re
quired for travelling the relevant distance. Thus, for
each vector a cumulative weighting factor g(v) of the
already planned path to the vector v is determined, and
an estimate h(v) is made for the total weighting factor of
the optimum path between the vector v and the destina
tion. The sum of g(v) and h(v), referred to as f(v), is an
evaluation value of the vector v. The evaluation value
f(b) of a bucket b is defined as the most attractive evalu
ation value of the vectors in the bucket b which are
listed on the candidate list C. Denote a vector for which
this best value is assumed as vib. Given a list BV of
source or starting vectors with corresponding f, g and h
values, and a list DV of target or destination vectors,
the algorithm finds an optimum path to one of the
sources for each target, provided such an optimum path
exists. Use is made of three data structures: the candi
date list C, the list T containing targets not yet found,
and the list S containing vectors which are or were
listed on the candidate list C (the search tree).

During the execution of the algorithm, in block 1 first
the candidate list C and the search tree S are initialised:
C is filled with all source vectors and S is filled with all
source vectors with their associated f, g and h values
and an empty field for registering a pointer indicating
the relationship with other vectors which together con
stitute a planned sub-route. In block 2, the list T with
targets not yet found is initialised: T becomes the target
list DV. In this respect it is assumed that BV and DV
have an empty cross-section. The list T will be simply
referred to hereinafter as the search list. In block 3 it is
checked whether at least one of the two lists C and T is
empty. If this is the case, the search is terminated: if the
candidate list C is empty and the search list T is not
empty, some targets cannot be reached; when the
search list T is empty, an optimum path has been found
to all target vectors. In block 12 the target list DV is
modified into the search list T with targets not found
(this list may possibly be empty). In block 13 the search
tree S is output, necessary for following the optimum

5,170,353
5

path by way of pointers. For as long as the candidate list
C and the search list T are not empty, the loop formed
by the blocks 3-11 is followed. In block 4 the vector v
having the most attractive evaluation value is selected
from the candidate list C. In block 5 is checked whether
this vector v is contained in the search list T. If this is
the case, the vector v is removed from the search list T
in block 6 because the target has been found. Subse
quently in block 7 it is checked whether the search list
T is empty. If so, an optimum path to all targets has been
found, the search is terminated and the program is con
tinued in block 12. If not, the vector v is removed from
the candidate list C in block 8. In block 9 the successors
to the vector v are determined: these are the vectors vi
related to the vector v. In block 11 it is determined for
each successor vi whether the new path including the
vector vi is better than an already existing path includ
ing the vector vi; if so, the search tree S, the candidate
list C, the evaluation value f(v) and the cumulative
weighting factor g(v) are adapted as will be described
hereinafter. To this end, each time the next vector vi is
selected in block 10, When all vectors have been dealt
with, the program continues in the block 3.

FIG. 3 is a more detailed representation of the block
11. In block 21 it is checked whether the vector vi is
present in the search tree S. If so, in block 22 the cumu
lative weighting factor of the new path, being
g(v)--R(vi), is compared with the cumulative
weighting factor of the previously found path g(vi).
Therein R(vi) is the weighting factor of the vector vi.
When the new path is more attractive, in block 23 the
vector v is added to the candidate list C and the associ
ated evaluation value f(vi) and cumulative weighting
factor g(vi) are adapted. In that case the search tree S is
adapted in block 24: new values for f and g are added to
the vector vi and also the pointer which indicates, by
back reference in the tree, the path planned thus far
between the vector vi and the sources. If no better value
was found in the block 22, the block 11 (FIG. 2) is
abandoned. If it is found in the block 21 that the vector
vi is not present in the search tree S, the vector vi is
added to the candidate list Cin block 25, and the evalua
tion value f(vi) and the cumulative weighting factor
g(vi) are adapted. In block 26 the search tree S is then
adapted: the vector vi is added with its f,g and h values,
and also the pointer for back reference. The loop
formed by the blocks 10 and 11 is followed until all
successors vi to the vector v have been examined.
The described algorithm produces in an optimum

path to the targets, subject to the condition that the
evaluation function satisfies given requirements. For
proof in this respect reference is made to the cited arti
cle by Hart et al.
The bucket oriented search algorithm proposed by

the invention deviates from the known algorithm in the
following respects. A number of buckets is temporarily
locked and a search is made only in the locked buckets.
The buckets to be locked are selected as follows. The
buckets which overlap the candidate list C together
form the candidate bucket list BC. As has already been
stated, these buckets have an evaluation value: the most
attractive evaluation value of the vectors in the relevant
bucket listed on the candidate list C. Initially an as large
as possible number of candidate buckets (limited by the
maximum available storage space) having the most at
tractive evaluation values can be locked in the working
memory. During each subsequent determination of the
buckets to be locked, given a number of candidate buck

10

15

25

30

35

45

50

55

65

6
ets present in the working memory, an evaluation value
is calculated also for all adjacent buckets (to be de
scribed hereinafter). The candidate buckets constitute,
together with the neighbour buckets of the candidate
buckets in the memory, the bucket request list BR. On
the basis of the evaluation values calculated, from this
list the buckets are selected to be locked in the working
memory. The determination of the locked buckets will
be regularly performed during the execution of the
search algorithm.
The vectors on the candidate list C which are not

present in a locked bucket are temporarily removed
from the list in order to be placed on a waiting list. As
a result, the paths found to the targets need not be opti
mum, because the candidate vectors were not expanded
in order of evaluation value as is necessary in order to
obtain optimum results in accordance with Hart et al.
When a target is reached, therefore, it may be that a
better path exists which has not yet been found. There
fore, in order to ensure optimum results, the search must
be continued.

During the search, at any instant only the path associ
ated with the candidate vector having the instantaneous
most attractive evaluation value is optimum, because all
vectors which have had a more attractive evaluation
value have been checked and resulted in paths having a
less attractive evaluation value. A target vector on the
candidate list, therefore, can be removed therefrom
only if all other vectors on the candidate list have a less
attractive evaluation value. Thus, the search must be
continued until all vectors on the candidate list have a
less attractive evaluation value than all target vectors.
Vectors on the candidate list which have a less attrac
tive evaluation value than all target vectors can never
result in a better path, so that they may be removed; this
is because the evaluation value f is monotonically non
descending during the search (see Hart et al.).
FIG. 4 shows a flowchart of the modified search

algorithm. As has already been stated, this algorithm
checks only the candidate vectors present in the locked
buckets (list L). The steps corresponding to the algo
rithm of FIG. 2 are denoted by a dashed line, the new
steps being denoted by a non-interrupted line. The new
steps will be described hereinafter.

In block 31 the list L with the locked buckets and the
bucket request list BR are initialised so as to be empty,
and the most attractive f value of the candidate list C,
referred to as fi, and then least attractive f value of the
search list T, referred to as f, are determined. In block
32 either error messages are read, after which all vec
tors which are present in an "incorrect' (for example,
illegible) bucket are removed from the candidate list C,
or messages concerning the writing of a bucket into the
memory are read. When in the latter case an available
bucket b is not present in the list L of locked buckets, its
evaluation value f(b) is compared with the best evalua
tion value of the row of messages thus far, referred to as
vlu. If necessary, vlu is adapted. In block 33 it is
checked whether the candidate list C is empty. If the
candidate list C is empty due to error messages in the
block 32, in block 39 the non-reached target vectors are
removed from the target list DV, the correct cumula
tive evaluation values are assigned to the target vectors
reached, and the locked buckets are released. If the
candidate list C is not empty, a filtered candidate list CL
is formed in the block 34 by testing which elements of
the candidate list C are present in the list L of locked
buckets. In block 35 it is subsequently checked whether

5,170,353
7

the filtered candidate list CL is empty or whether said
evaluation value vlu in the block 32 has obtained a value
which is more attractive than the median of the evalua
tion values of the buckets on the list L of locked buck
ets, meaning that an important new bucket has been 5
read. If at least one of these two conditions is satisfied,
the following takes place in block 36. All locked buck
ets are released and the candidate bucket list BC, the
bucket request list BR, the list of locked buckets L and
the filtered candidate list CL are determined again, after 10
which, once the filtered candidate list C. has become
empty, the writing of a bucket into the memory is
awaited; this procedure is repeated until CL is not
empty or C is empty. Subsequently, in block 37 it is
checked whether the candidate list C is empty. If so, the is
procedure goes to block 39; if not, it proceeds to the
block 4. Some blocks have only been slightly modified;
they will be denoted hereinafter by the reference nu
meral used in FIG. 2, supplemented by the letter "A".
In block 5A it is checked whether the vector v is pres
ent in the search list T and also has the most attractive
evaluation value of all vectors on the candidate list C. If
both conditions are satisfied, the vector v can be re
moved from the search list T. In block 8A the vector v
is removed not only from the candidate list C but also 25
from the filtered candidate list CL. In block 9A the
successors to the vector v which are situated within a
given bucket are determined. Block 11A deviates from
the block 11 in that, if the bucket of the vector vi is
present in L, the vector vi is also added to the filtered
candidate list CL before being added to the candidate
list C (in two locations in block 11). In block 38, fi and
fare adapted to the new candidate list C and the search
list T, respectively and vectors which have a less attrac
tive evaluation value than f, and target vectors which
have a better evaluation value than fare removed from
the candidate list C or the filtered candidate list CL.
However, they remain in the search tree S. Finally in
block 39 the target vectors which have not been
reached are removed from the target list DV, the cor
rect cumulative evaluation values are assigned to the
target vectors which have been reached, and the locked
buckets are released.

Because the vehicle is constantly in motion, the
Source vector continuously changes during the search.
Therefore, it is handy to search in the reverse direction,
i.e. to determine a route from the fixed target back to
the actual position of the vehicle.
A version of the determination of the buckets to be

locked will be described hereinafter. As already men
tioned, the buckets which overlap the candidate list C
together constitute the candidate bucket list BC. For all
adjoining buckets of the candidate buckets locked in the
working memory at any instant an evaluation value is
determined as follows (see FIG. 5). The connecting line
between the centres of the actual bucket b and the rele
vant neighbouring bucket b' intersects the common
boundary, or the prolongation thereof, at a point z. The
evaluation value f(b) of the neighbouring bucket b' is
defined as:

30

35

45

50

where Vb is the vector in the bucket b on the candidate
list which has the most attractive evaluation value (as
suming that only one such vector exists), f(v)= f(b), 65
g(v) is the cumulative weighting factor of an already
planned sub-route from the vector vb to the target d,
h(vb, z) is the weighting factor of an idealised straight

8
path between the end point of the vector v, and the
point z, and h(z) is the weighting factor of an idealised
straight path between the point z and the actual position
s of the vehicle.

If there are several vectors having the most attractive
evaluation value for the bucket b, for example the vec
tor situated nearest to the point z can be selected.
When a bucket b'neighbours several locked buckets

the most attractive value for f(b) is selected.
For the determination of the successors to a vector V,

the following problem may arise in the bucket oriented
algorithm. When the vector v touches the boundary of
a bucket, one or more successors may be situated in a
neighbouring buckets which may not have been locked
in the working memory. This can be solved as described
with reference to FIG. 6.
Vector v1 of bucket b touches the boundary of the

buckets b1 and b2. During the determination of the suc
cessors to v1 (denoted by so-called thread pointers), as
soon as a successor v3 is situated in a non-locked neigh
bouring bucket b, the vector v with a pointer to v3 is
added to the candidate list C. This pointer indicates that
the interrupted determination of the successors to V
must be continued as from v3 as soon as the bucket b2
has been read and locked. When this is the case, the
determination of the successors to v must be inter
rupted again at V4 if b were no longer locked.
By assigning an "infinitely attractive' evaluation

value to the vector with pointer added to the candidate
list Cupon each interruption, it is ensured that, as soon
as the neighbouring bucket has been read, it is locked
and the determination of the successors continues until
they have all been generated and examined.
When the vehicle is in motion, the actual position

does not correspond to the stated starting position for
which an optimum route is searched. When the actual
position is reached by the search tree at a given instant
during this search, the search may be interrupted. When
the actual position is situated outside the generated
search tree after the determination of the optimum route
to the stated starting position, the search must be contin
ued until the search tree has reached the actual position.

I claim:
1. A method of determining an optimum route be

tween a starting position and a destination position on
the basis of topographical and traffic information by
repeated selection of vectors and expansion of a search
tree which contains previously selected vectors which
form already planned sub-routes, the method compris
ing:

(a) assigning a respective weighting factor to each of
the vectors and determining a cumulative
weighting factor for each respective one of the
already planned sub-routes by adding the
weighting factors of the vectors of the respective
one of the already planned sub-routes;

(b) sub-dividing the topographic and traffic informa
tion into a number of buckets in a background
memory wherein the number of buckets is the total
available buckets;

(c) determining a maximum number of buckets from
the total available buckets for transfer to a working
memory based on an evaluation value obtained by
summing
i) the cumulative weighting factor of at least one of

the already planned sub-routes; and

5,170,353

ii) the weighting factor of at least one vector of a
proposed sub-route within a relevant bucket;

(d) selecting a vector to add to the search tree
wherein the vector is selected from within the
working memory, whereby the search tree is ex
panded; and

(e) outputting the optimum route based on a best one
of the sub-routes in the search tree when all vectors
have been searched.

2. A method of determining an optimum route as
claimed in claim 1, comprising the steps of

determining said evaluation value for a bucket in the
working memory by selecting the most attractive
evaluation value of all vectors in the relevant
bucket which are listed on a candidate list, and

determining said evaluation value for a neighboring
bucket of the bucket in the working memory by
adding
the weighting factor of an idealized straight path
between a current position and a point z which is
a point intersection of
a connecting line between centers of said bucket
and said neighboring bucket and

a common boundary or an extension of the con
mon boundary of said bucket and said neigh
boring bucket,

the weighting factor of an idealized straight path
between said point z and an end point of a vector
Vb in said bucket, and

the cumulated weighting factor of an already
planned sub-route from said vector v, to a target
Vector.

3. A method of determing an optimum route as
claimed in claim 2, comprising the step of selecting the
vector vib that has the most attractive evaluation value
of all vectors in said bucket which are listed on the
candidate list.

4. A method of determining an optimum route as
claimed in claim 3, comprising the step of selecting the
vector vi, which is situated nearest to said point z, from
several vectors in a bucket which are listed on the can
didate list as having the most attractive evaluation
value.

5. A method of determining an optimum route as
claimed in claim 2, comprising the step of selecting, as
the most attractive evaluation value, the evaluation
value of a neighboring bucket adjoining several buckets
in the working memory.

6. A method of determining an optimum route as
claimed in claim 3, comprising the step of selecting, as
the most attractive evaluation value, the evaluation
value of a neighboring bucket adjoining several buckets
in the working memory.

7. A method of determining an optimum route as
claimed in claim 4, comprising the step of selecting, as
the most attractive evaluation value, the evaluation
value of a neighboring bucket adjoining several buckets
in the working memory.

8. The method of claim 1, wherein the background
memory is a compact disc.

9. A navigation system including a route planner
having

a memory for bucket storage of topographical and
traffic information;

an input/output unit for inputting and outputting
information concerning a given starting position
and a given destination position; and

10
a processor which is programmed so that, via re

peated selection of vectors and expansion of a
search tree containing previously selected vectors
which form already planned sub-routes, an opti

5 mum route is calculated from the given starting
position to the given destination position based on
weighting factors assigned to each vector,

wherein the improvement comprises that the memory
includes:

(a) a background memory in which the bucket orga
nized topographical and traffic information is
stored; and

(b) a working memory for receiving from the back
ground memory buckets selected based on an eval
uation value which is determined by a sum of the
weighting factors of the vectors of:
i) at least one of the already planned sub-routes and
ii) a proposed sub-route, the proposed sub-route

including at least one vector from at least one of
the selected buckets,

such that only vectors from the selected buckets in the
working memory are used for the repeated selection of
the vectors and the expansion of the search tree.

10. A navigation system as claimed in claim 9, further
comprising:

(a) means for determining an actual position of an
object whose route is to be planned; and

(b) means for comparing the actual position with
positions on routes found, such that the route plan

O

15

20

25

30 ner continues a search when non-correspondence is
found by said means for comparing and terminates
the search when correspondence is found by said
means for comparing.

3s 11. A navigation system as claimed in claim 9,
wherein the working memory is for storing:

a candidate list with vectors to be selected for expan
sion,

a search tree list with vectors already examined and
their evaluation values and pointers,

a search list with target vectors not yet found,
a candidate bucket list with buckets which overlap

the candidate list,
a bucket request list with both candidate buckets and

neighboring buckets of those candidate buckets
already in the working memory,

a locked bucket list with buckets which are locked in
the working memory, and

a filtered candidate list with candidate list vectors
present in one of the locked buckets.

12. The system of claim 9, wherein the background
memory is a compact disc.

13. A method for determining an optimum route
between a starting position and a destination position on

55 the basis of topographical and traffic information com
prising the steps of

a) storing the topographical and traffic information in
buckets in a background memory in the form of
vectors and weighting values associated with the
vectors;

b) loading some of the buckets into a working mem
ory based on a first evaluation value which is a sum
of weighting values of at least one already planned
sub-route and estimated values associated with the
buckets;

c) searching vectors within the working memory
based on a second evaluation value which is a sum
of

40

45

50

60

65

5,170,353
11

i) the weighting value of at least one currently
searched sub-route which is one of the at least
one already planned sub-route, said at least one
currently searched sub-route leading to a cur
rently searched vector; and

ii) the weighting value associated with the cur
rently searched vector;

d) designating the optimum route, based on a combi
nation of
i) one of the at least one currently searched sub

route;
ii) the currently searched vector; and

5

O

15

20

25

35

40

45

50

55

65

12
iii) a target vector which leads to the destination

position.
14. The method of claim 13, wherein the background

memory is a compact disc.
15. The method of claim 13 further comprising
prior to the loading step, initializing a search tree for

containing the at least one already planned sub
route, and

as part of the designating step, repeating the loading
and searching steps until the already planned sub
route leading to the currently searched vector
when combined with the currently searched vector
forms the optimium route.

k k

